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Explain the basic concepts of orbital motion and describe how to 
analyze them

  

Explain and use the basic laws of motion Isaac Newton developed

  

Use Newton’s laws of motion to develop a mathematical and 
geometric representation of orbits

  

Use two constants of orbital motion—specific mechanical energy and 
specific angular momentum—to determine important orbital variables
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Space Mission Architecture. This chapter
deals with the Trajectories and Orbits segment
of the Space Mission Architecture, introduced
in Figure 1-20.

 

pacecraft work in orbits. We describe an orbit as a “racetrack” that
a spacecraft drives around, as seen in Figure 4.1.3-1. Orbits and
trajectories are two of the basic elements of any space mission.

Understanding this motion may at first seem rather intimidating. After all,
to fully describe orbital motion we need some basic physics along with a
healthy dose of calculus and geometry. However, as we’ll see, spacecraft
orbits aren’t all that different from the paths of baseballs pitched across
home plate. In fact, in most cases, both can be described in terms of the
single force pinning you to your chair right now—gravity. 

Armed only with an understanding of this single pervasive force, we
can predict, explain, and understand the motion of nearly all objects in
space, from baseballs to spacecraft, to planets and even entire galaxies.
Section 4.1.3 is just the beginning. Here we’ll explore the basic tools for
analyzing orbits. In the next several chapters we’ll see that, in a way,
understanding orbits gives us a crystal ball to see into the future. Once we
know an object’s position and velocity, as well as the nature of the local
gravitational field, we can gaze into this crystal ball to predict where the
object will be minutes, hours, or even years from now.

We’ll begin by taking a conceptual approach to understanding orbits.
Once we have a basic feel for how they work, we’ll take a more rigorous
approach to describing spacecraft motion. We’ll use tools provided by
Isaac Newton, who developed some fundamental laws more than 200
years ago that we can use to explain orbits today. Finally, we’ll look at
some interesting implications of orbital motion that allow us to describe
their shape and determine which aspects remain constant when left
undisturbed by outside non-gravitational forces.

Figure 4.1.3-1. Orbits as Racetracks. Orbits are like giant racetracks on which
spacecraft “drive” around Earth.

S

4.1.3-2



            

Figure 4.1.3-2. Throwing Baseballs Off of a
Mountain. When we throw the balls faster, they
travel farther before hitting the ground.
4.1.3.1 Orbital Motion

In This Section You’ll Learn to...

Baseballs in Orbit

What is an orbit? Sure, we said it was a type of “racetrack” in space
that an object drives around, but what makes these racetracks?
Throughout the rest of this chapter we’ll explore the physical principles
that allow orbits to exist, as well as our mathematical representations of
them. But before diving into a complicated explanation, let’s begin with a
simple experiment that illustrates, conceptually, how orbits work. To do
this, imagine that we gather a bunch of baseballs and travel to the top of a
tall mountain.

Visualize that we are standing on top of this mountain prepared to
pitch baseballs to the east. As the balls sail off the summit, what do we
see? Besides seeing unsuspecting hikers panting up the trail and running
for cover, we should see that the balls follow a curved path. Why is this?
The force of our throw is causing them to go outward, but the force of
gravity is pulling them down. Therefore, the “compromise” shape of the
baseball’s path is a curve. 

The faster we throw the balls, the farther they go before hitting the
ground, as you can see in Figure 4.1.3-2. This could lead you to conclude
that the faster we throw them the longer it takes before they hit the
ground. But is this really the case? Let’s try another experiment to see. 

As we watch, two baseball players, standing on flat ground, will
release baseballs. The first one simply drops a ball from a fixed height. At
exactly the same time, the second player throws an identical ball
horizontally at the same height as hard as possible. What will we see? If
the second player throws a fast ball, it‘ll travel out about 20 m (60 ft.) or so
before it hits the ground. But, the ball dropped by the first player will hit
the ground at exactly the same time as the pitched ball, as Figure 4.1.3-3
shows!

How can this be? To understand this seeming paradox, we must
recognize that, in this case, the motion in one direction is independent of
motion in another. Thus, while the second player’s ball is moving
horizontally at 30 km/hr (20 m.p.h.) or so, it’s still falling at the same rate
as the first ball. This rate is the constant gravitational acceleration of all
objects near Earth’s surface, 9.798 m/s2. Thus, they hit the ground at the
same time. The only difference is that the pitched ball, because it also has
horizontal velocity, will travel some horizontal distance before
intercepting the ground.

Explain, conceptually, how an object is put into orbit

Describe how to analyze the motion of any object
4.1.3-3



    

Figure 4.1.3-4. Earth’s Curvature. Earth’s
curvature means the surface curves down
about 5 m for every 8 km. On the surface of a
sphere with that curvature, an object moving at
7.9 km/s is in orbit (ignoring air drag).

Figure 4.1.3-5. Baseballs in Orbit. As we
throw baseballs faster and faster, eventually we
can reach a speed at which Earth curves away
as fast as the baseball falls, placing the ball in
orbit. At exactly the right speed it will be in a
circular orbit. A little faster and it’s in an elliptical
orbit. Even faster and it can escape Earth
altogether on a parabolic or hyperbolic
t j t
Now let’s return to the top of our mountain and start throwing our
baseballs faster and faster to see what happens. No matter how fast we
throw them, the balls still fall at the same rate. However, as we increase
their horizontal velocity, they’re able to travel farther and farther before
they hit the ground. Because Earth is basically spherical in shape,
something interesting happens. Earth’s spherical shape causes the surface
to drop approximately five meters vertically for every eight kilometers
horizontally, as shown in Figure 4.1.3-4. So, if we were able to throw a
baseball at 7.9 km/s (assuming no air resistance), its path would exactly
match Earth’s curvature. That is, gravity would pull it down about five
meters for every eight kilometers it travels, and it would continue around
Earth at a constant height. If we forget to duck, it may hit us in the back of
the head about 85 minutes later. (Actually, because Earth rotates, it would
miss us.) A ball thrown at a speed slower than 7.9 km/s falls faster than
Earth curves away beneath it. Thus, it eventually hits the surface. The
results of our baseball throwing experiment are shown in Figure 4.1.3-5.

If we analyze our various baseball trajectories, we see a whole range of
different shapes. Only one velocity produces a perfectly circular
trajectory. Slower velocities cause the trajectory to hit the Earth at some
point. If we were to project this shape through the Earth, we’d find the
trajectory is really a piece of an ellipse (it looks parabolic, but it’s actually
elliptical). Throwing a ball with a speed slightly faster than the circular
velocity, also results in an ellipse. If we throw the ball too hard, it leaves
Earth altogether on a parabolic or hyperbolic trajectory, never to return.
No matter how hard we throw, our trajectory resembles either a circle,
ellipse, parabola, or hyperbola. As we’ll see in Section 4.1.3.4, these four
shapes are conic sections. 

Figure 4.1.3-3. Both Balls Hit at the Same Time. A dropped ball and a ball thrown
horizontally from the same height will hit the ground at the same time. This is because
horizontal and vertical motion are independent. Gravity is acting on both balls equally, pulling
them to the ground with exactly the same acceleration of 9.798 m/s2.
4.1.3-4



        

Figure 4.1.3-6. Motion Analysis Process
(MAP) Checklist. Apply these steps to learn
about moving objects and describe how they
will move in the future.
So an object in orbit is literally falling around Earth, but because of its
horizontal velocity it never quite hits the ground. Throughout this book
we’ll see how important having the right velocity at the right place is in
determining the type of orbit we have. 

Analyzing Motion
Now that we’ve looked at orbits conceptually, let’s see how we can

analyze this motion more rigorously. Chances are, when you first learned
to play catch with a baseball, you had problems. Your poor partner had to
chase after your first tentative throws, which never seemed to go where
you wanted. But gradually, after a little bit of practice (and several
exhausted partners), you got better. Eventually, you could place the ball
right into your partner’s glove, almost without conscious thought.

In fact, expert pitchers don’t think about how to throw; they simply
concentrate on where to throw. Somehow, their brain calculates the
precise path needed to deliver the ball to the desired location. Then it
commands the arm to a predetermined release point and time with
exactly the right amount of force. All this happens in a matter of seconds,
without a thought given to the likes of Isaac Newton and the equations
that describe the baseball’s motion. “So what?” you may wonder. Why
bother with all the equations that describe why it travels the way it does?

Unfortunately, to build a pitching machine for a batting cage or to
launch a spacecraft into orbit, we can’t simply tell the machine or rocket
to “take aim and throw.” In the case of the rocket especially, we must
carefully study its motion between the launch pad and space. 

Now, we’ll define a system for analyzing all types of motion. It’s called
the Motion Analysis Process (MAP) checklist and is shown in Figure
4.1.3-6. To put the MAP into action, imagine that you must describe the
motion of a baseball thrown by our two baseball players in Figure 4.1.3-7.
How will you go about it?

First of all, you need to define some frame of reference or coordinate
system. For example, do you want to describe the motion with respect to a
nearby building or to the center of Earth? In either case, you must define a
reference point and a coordinate frame for the motion you’re describing,
as shown in Figure 4.1.3-8.

Figure 4.1.3-7. Baseball Motion. To analyze the motion of a baseball, or a spacecraft, we
must step through the Motion Analysis Process (MAP) checklist.
4.1.3-5



            

Figure 4.1.3-8. Defining a Coordinate
System. To analyze a baseball’s motion, we
can define a simple, two-dimensional

ng enough horizontal velocity so 
ve Earth’s surface curve away 
tially falling around the Earth but 

the motion of any object through 
Next you need some short-hand way of describing this motion and its
relation to the forces involved—a short-hand way we’ll call an equation of
motion. Once you’ve determined what equation best describes the baseball’s
motion, you need to simplify it so you can use it. After all, you don’t want to
try to deal with how the motion of the baseball changes due to the
gravitational pull of Venus or every little gust of wind in the park. So you
must make some reasonable simplifying assumptions. For instance, you could
easily assume that the gravitational attraction on the baseball from Venus, for
example, is too small to worry about and the drag on the baseball due to air
resistance is insignificant. And, in fact, as a good approximation, you could
assume that the only force on the baseball comes from Earth’s gravity.

With these assumptions made, you can then turn your attention to the
finer details of the baseball problem. For example, you want to carefully
define where and how the motion of the baseball begins. We call these the
initial conditions of the problem. If you vary these initial conditions somehow
(e.g., you throw the baseball a little harder or in a slightly different
direction), the motion of the baseball will change. By assessing how these
variations in initial conditions affect where the baseball goes, you can find
out how sensitive the trajectory is to small changes or errors in them.

Finally, once you’ve completed all of these steps, you should verify the
entire process by testing the model of baseball motion you’ve developed.
Actually throw some baseballs, measure their trajectory deviations, and
analyze differences (error analysis) between the motion you predict for the
baseball and what you find from your tests. If you find significant
differences, you may have to change your coordinate system, equation of
motion, assumptions, initial conditions, or all of these. With the MAP in
mind, we’ll begin our investigation of orbital motion in the next section by
considering some fundamental laws of motion Isaac Newton developed.

Section Review
Key Concepts

From a conceptual standpoint, orbital motion involves giving somethi
that, by the time gravity pulls it down, it has traveled far enough to ha
from it. As a result, it stays above the surface. An object in orbit is essen
going so fast it never hits it. 

The Motion Analysis Process is a general approach for understanding 
space. It consists of

• A coordinate system

• An equation of motion

• Simplifying assumptions

• Initial conditions

• Error analysis

• Testing the model
4.1.3-6



              

Figure 4.1.3-9. Cartwheel Galaxy. Our laws
of motion apply universally, including the stars
and planets of the Cartwheel Galaxy.
(Courtesy of the Association of Universities for
Research in Astronomy, Inc./Space Telescope
Science Institute)

Figure 4.1.3-10. Quarter Pounder with
Cheese™. When we order a Quarter Pounder
with Cheese, we get about 0.1 kg mass of
meat.
4.1.3.2 Newton’s Laws

In This Section You’ll Learn to...

Since the first caveman threw a rock at a sabre-toothed tiger, we’ve
been intrigued by the study of motion. In our quest to understand nature,
we’ve looked for simple, fundamental laws that all objects obey. These
Laws of Motion would apply universally for everything from gumdrops
to galaxies (Figure 4.1.3-9). They would be unbreakable and empower us
to explain the motion of the heavens, understand the paths of the stars,
and predict the future position of our Earth. The Greek philosopher
Aristotle defined concepts of orbital motion that held favor until
challenged by such critical thinkers as Galileo and Kepler. Recall that
Kepler gave us three laws to describe planetary motion, but didn’t
explain their causes. That’s where Isaac Newton comes in. 

Reflecting on his lifetime of scientific accomplishments, Newton
rightly observed that he was able to do so much because he “stood on the
shoulders of giants.” Armed with Galileo’s two basic principles of
motion—inertia and relativity—and Kepler’s laws of planetary motion,
Isaac Newton was poised to determine the basic laws of motion that
revolutionized our understanding of the world.

No single person has had as great an impact on science as Isaac
Newton. His numerous discoveries and fundamental breakthroughs
easily fill a volume the size of this book. Inventing calculus (math
students still haven’t forgiven him for that!), inventing the reflecting tele-
scope, and defining gravity are just some of his many accomplishments.
For our purposes, we’ll see that the study of orbits (astrodynamics) builds
on four of Newton’s laws: three of motion and one describing gravity. 

Weight, Mass, and Inertia

Before plunging into a discussion of Newton’s many laws, let’s take a
moment to complicate a topic that, until now, you probably thought you
understood very well—weight. When we order a “Quarter Pounder with
Cheese™” (Figure 4.1.3-10), we’re describing the weight of the
hamburger (before cooking). To measure this weight (say, to determine
what it weighs after cooking), we slap the burger on a scale and read the
results. If our scale gave weight in metric units, we’d see our quarter-
pounder weighs about one newton. This property we call weight is really
the result of another, more basic property of the hamburger called “mass”
plus the influence of gravity. A hamburger that weighs one newton (1/4

Explain the concepts of weight, mass, and inertia

Explain Newton’s laws of motion

Use Newton’s laws to analyze the simple motion of objects
4.1.3-7



        

Figure 4.1.3-11. What is Mass? The amount
of mass an object has tells us three things
about it: (1) how much “stuff” it contains, (2)
how much it resists changes in motion—its
inertia, and (3) how much gravitational force it
exerts and is exerted on it by other masses in
the universe.
pound) has a mass of 1/9.798 kg or about 0.1 kg. Knowing the mass of
our hamburger, we automatically know three useful things about it, as
illustrated in Figure 4.1.3-11.

First, mass is a measure of how much matter or “stuff” the hamburger
contains. The more mass, the more stuff. If we have to haul 200 Quarter
Pounders™ to a family picnic, we can add the masses of individual burgers
to determine how much total mass we need to carry. Carrying these
hamburgers, which have a total mass of 22.5 kg (50 lbs.), will take some
planning. Thus, knowing how much stuff one object has is important
whenever we must combine it with others (as we do for space missions).

But that’s not all. Knowing the mass of an object also tells us how
much inertia it has. Galileo first put forth the principle of inertia in terms
of an object’s tendency to stay at rest or in motion unless acted on by an
outside influence. To visualize inertia, assume you’re in “couch potato”
mode in front of the TV, with your work sitting on the desk, calling for
your attention. Somehow, you just can’t motivate yourself to get up from
the couch and start working. You have too much “inertia,” so it takes an
outside influence (another person or a deep-rooted fear of failure) to over-
come that “inertia.” 

For a given quantity of mass, inertia works in much the same way. An
object at rest has a certain amount of inertia, represented by its mass, that
must be overcome to get it in motion. Thus, to get the Quarter Pounder™
from its package and into your mouth, you must overcome its inherent
inertia. You do that when you pick it up, if you can!

An object already in motion also has inertia by virtue of its mass. To
change its direction or speed, we must apply a force. For instance a car
skidding on ice slides in a straight line indefinitely (assuming no friction
force), or at least until it hits something.

Finally, knowing an object’s mass reveals how it affects other objects
merely by its presence. There’s an old, corny riddle which asks “Which
weighs more—a pound of feathers or a pound of lead?” Of course, they
weigh the same—one pound. Why is that? Weight is a result of two
things—the amount of mass, or “stuff,” and gravity. So, assuming we
measure the weight of feathers and lead at the same place, their masses
are the same. Gravity is the tendency for two (or more) chunks of stuff to
attract each other. The more stuff (or mass) they have, the more they
attract. This natural attraction between chunks of stuff is always there.
Thus, our Quarter Pounder™ lying in its package causes a very slight
gravitational pull on our fries, milk shake, and all other mass in the uni-
verse. (You’d better eat fast!)

Now that you’ll never be able to look at a Quarter Pounder™ the same
way again, let’s see how Isaac Newton used these concepts of mass to
develop some basic laws of motion and gravity. 
4.1.3-8



                 

Figure 4.1.3-12. Newton’s First Law. Any
object in motion, such as a speeding bullet, will
tend to stay in motion, in a straight line, unless
acted on by some outside force (like gravity or
hitting a brick wall.)

Figure 4.1.3-13. Bulldozer, Baby Carriage,
and Momentum. The momentum of any object
is the product of its mass and velocity. So, a
bulldozer moving at the same speed as a baby
carriage has much more momentum, due to its
large mass.
Momentum

Newton’s First Law of Motion was actually a variation on Galileo’s
concept of inertia. He discovered it and other principles of gravity and
motion in 1655, when a great plague ravaged England and caused
universities to close. At the time, he was a 23-year-old student at
Cambridge. Instead of hitting the beach for an extended “spring break,”
the more scholarly Newton hit the apple orchard for meditation (or so
legend has it). But his findings weren’t published until 1687—in The
Mathematical Principles of Natural Philosophy. In this monumental work he
stated

Newton’s First Law of Motion. A body continues in its state of rest, or
of uniform motion in a straight line, unless compelled to change that state
by forces impressed upon it.

Newton’s First Law says that any object (or chunk of mass) that is at
rest will stay at rest forever, unless some force makes it move. Similarly,
any object in motion will stay in motion forever, with a constant speed
in the same straight-line direction, until some force makes it change
either its speed or direction of motion. Try to stop a speeding bullet like
the one in Figure 4.1.3-12 and you get a good idea how profound
Newton’s first law is.

One very important aspect of the first law to keep in mind, especially
when you study spacecraft motion, is that motion tends to stay in a
straight line. Therefore, if you ever see something not moving in a
straight line, such as a spacecraft in orbit, some force must be acting on it.

We know that an object at rest is lazy; it doesn’t want to start moving
and will resist movement to the fullest extent of its mass. We’ve also
discovered that, once it’s in motion, it resists any change in its speed or
direction. But the amount of resistance for an object at rest and one in
motion are not the same! This seeming paradox is due to the concept of
momentum. Momentum is the amount of resistance an object in motion
has to changes in its speed or direction of motion. This momentum is the
result of combining an object’s mass with its velocity. Because an object’s
velocity can be either linear or angular, there are two types of momentum:
linear and angular. 

Let’s start with linear momentum. To see how it works, we consider
the difference between a bulldozer and a baby carriage moving along a
street, as shown in Figure 4.1.3-13. Bulldozers are massive machines
designed to savagely rip tons of dirt from Earth. Baby carriages are
delicate, four-wheeled carts designed to carry cute little babies around
the neighborhood. Obviously, a bulldozer has much more mass than a
baby carriage, but how does their momentum compare? Unlike inertia,
which is a function only of an object’s mass, linear momentum, , is the
product of an object’s mass, m, and its velocity, . [Note: because we
describe velocity and momentum in terms of magnitude and direction,
we treat them and other important concepts as vector quantities.]

p
V
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Figure 4.1.3-14. Angular Momentum. A
non-spinning top (left) falls right over, but a
spinning top, because of its angular
momentum, resists the force applied by gravity

Figure 4.1.3-15. The Right-hand Rule. We
find the direction of the angular velocity vector,

, and the angular momentum vector, ,
using the right-hand rule.
Ω H
(4.1.3-1)

where
= linear momentum vector (kg · m/s)

m = mass (kg)
= velocity vector (m/s)

To compare the linear momentum of the bulldozer and the baby
carriage, we’d have to know how fast they were moving. For the two to
have the same linear momentum, the baby carriage, being much less
massive, would have to be going much, much faster!

Linear momentum is fairly basic because it involves motion in a
straight line. Angular momentum, on the other hand, is slightly harder to
understand because it deals with angular motion. Let’s consider a simple
toy top. If we set the top upright on a table, it will fall over, but if we spin
it fast enough, the top will seem to defy gravity. A spinning object tends
to resist changes in the direction and rate of spin, like the toy top shown
in Figure 4.1.3-14, just as an object moving in a straight line resists
changes to its speed and direction of motion. Angular momentum, , is
the amount of resistance of a spinning object to change in spin rate or
direction of spin. Linear momentum is the product of the object’s mass,
m, (which represents its inertia, or tendency to resist a change in speed
and direction), and its velocity, . Similarly, angular momentum is the
product of an object’s resistance to change in spin rate or direction, and its
rate of spin. An object’s resistance to spin is its moment of inertia, I. We
represent the angular velocity, which is a vector, by . So we find the
angular momentum vector, , using Equation (4.1.3-2).

(4.1.3-2)

where
= angular momentum vector (kg · m2/s)

I = moment of inertia (kg · m2)
= angular velocity vector (rad/s)

To characterize the direction of angular momentum, we need to examine
the angular velocity, . Look at the spinning wheel in Figure 4.1.3-15 and
apply the right-hand rule. With our fingers curled in the direction it’s
spinning, our thumb points in the direction of the angular velocity vector,

, and the angular momentum vector, .
As Equation (4.1.3-2) implies,  is always in the same direction as the

angular velocity vector, . In the next section we’ll see that, because of
angular momentum, a spinning object resists change to its spin direction
and spin rate.

We can describe angular momentum in another way. A mass spinning
on the end of a string also has angular momentum. In this case, we find it
by using the instantaneous tangential velocity of the spinning mass, ,
and the length of the string, , also called the moment arm. We combine
these two with the mass, m, using a cross product relationship to get .

p mV=

p

V
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Figure 4.1.3-16. Describing Angular Mo-
mentum. The direction of the angular momen-
tum vector, , is perpendicular to  and ,
and follows the right-hand rule.

H R V

Figure 4.1.3-17. Newton’s Second Law.
The force we must apply to stop a moving
object depends on how fast we want to change
its momentum. If two bulldozers are moving at
1 m/s (about the speed of a brisk walk), we
must apply a much, much larger force to stop a
bulldozer in one second than to stop it in one
hour.
  

(4.1.3-3)

where
= angular momentum vector (kg · m

 

2

 

/s)
= position (m)

m = mass (kg)
= velocity vector (m/s)

By the nature of the cross product operation, we can tell that  must
be perpendicular to both  and . Once again, we can use the right-
hand rule to find , as shown in Figure 4.1.3-16.

In Section 4.1.3.5, we’ll see that angular momentum is a very important
property of spacecraft orbits. Later, we’ll find angular momentum is also
a useful property for gyroscopes and spacecraft in determining and
maintaining their attitude.

 

Changing Momentum

 

Now that we’ve looked at momentum, let’s go back to Newton’s laws
of motion. As we saw, whether we’re dealing with linear or angular
momentum, both represent the amount a moving object resists change in
its direction or speed. Now we can determine what it will take to
overcome this resistance using Newton’s Second Law.

 

Newton’s Second Law of Motion.

 

The time rate of change of an object’s
momentum equals the applied force.

 
In other words, to change an object’s momentum very quickly, such as

when we hit a fast ball with a bat, the force applied must be relatively
high. On the other hand, if we’re in no hurry to change the momentum,
we can apply a much lower force over much more time. 

Let’s imagine we see a bulldozer creeping down the street at 1 m/s
(3.28 ft./s), as in Figure 4.1.3-17. To stop the bulldozer dead in its tracks,
we must apply some force, usually by pressing on the brakes. How much
force depends on how fast we want to stop the bulldozer. If, for instance,
we want to stop it in one second, we’d have to overcome all of its
momentum quickly by applying a tremendous force. On the other hand,
if we want to bring the bulldozer to a halt over one hour, we could apply
a much smaller force. Thus, the larger the force applied to an object, the
faster its momentum changes.

Now let’s summarize the relationship implied by Newton’s Second
Law. The shorthand symbol we’ll use to represent a force is . The
symbol  represents linear momentum. To represent how fast a quantity
is changing, we must introduce some notation from calculus. (See
Appendix A.3 for a complete review of these concepts.) We use the Greek
symbol “delta,” 

 

∆

 

, to represent a very small change in any quantity. Thus,
we represent the rate of change of a quantity, such as momentum, , over
some short length of time, t, as

H R mV×=

H
R

V

H
R V

H

F
p

p
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(4.1.3-4)

This equation shows how fast momentum is changing. We now express
Newton’s Second Law in symbolic shorthand as

(4.1.3-5)

which is true only if 

 

∆

 

t is very small.
We can expand this equation by applying the

 

 

 

∆

 

 to each term in the
parentheses (another concept from calculus), to get

(4.1.3-6)

So what can we do with this relationship? Let’s begin with  in
the second term. This ratio represents how fast the mass of the object is
changing. For many cases, the mass of the object won’t change, so this
term is zero for those cases. Now, for constant mass problems, we have
only the first term in the relationship , which represents how fast
velocity is changing. But this is just the definition of acceleration, . If we
substitute  for  into Equation (4.1.3-6), we get the more familiar
version

(4.1.3-7)

where
= force vector (kg m/s

 

2

 

 = N)
m = mass (kg)

= acceleration (m/s
 

2
 

)

Equation (4.1.3-7) is arguably one of the most useful equations in all of
physics and engineering. It allows us to understand how forces affect the
motion of objects. Armed with this simple relationship, we can determine
everything from how much force we need to stop a bulldozer, to the
amount of acceleration Earth’s gravity causes on the Moon. 

 

Action and Reaction

 

Newton’s first two laws alone would have made him famous, but he
went on to discover a third law, which describes a very important
relationship between action and reaction. 

A simple example of Newton’s Third Law in action applies to ice
skating. Imagine two ice skaters, standing in the middle of the rink, as
shown in Figure 4.1.3-18. If one gives the other a push, what happens?
They both move backward! The first skater exerted a force on the second,
but in turn an equal but opposite force is exerted on him, thus sending
him backward! In fact, Newton found that the reaction is exactly equal in
magnitude but opposite in direction to the original action.

∆p
∆t
------- change  in  momentum

change  in  time
----------------------------------------------------------=

F
∆p
∆t
------- ∆ mV( )

∆t
------------------= =

F m∆V
∆t
-------- ∆m

∆t
---------+ V=

∆m ∆t⁄

∆V ∆t⁄
a

a ∆V ∆t⁄

F ma=

F
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Figure 4.1.3-19. Newton’s Law of
Universal Gravitation. The force of attraction
between any two masses is directly
proportional to the product of their masses and
inversely propor-tional to the square of the
distance between them. Thus, if we double the
distance between two objects, the gravitational
force decreases to 1/4 the original amount.
  

Newton’s Third Law of Motion.

 

When body A exerts a force on body B,
body B will exert an equal, but opposite, force on body A. 

In the free-fall environment of space an astronaut must be very
conscious of this fact. Suppose an astronaut tries to use a power wrench
to turn a simple bolt without the force of gravity to anchor her in place.
Unless she braces herself somehow, 

 

she’ll

 

 start to spin instead of the bolt! 

 

Gravity

 

The image most people have of Newton is of a curly-haired man clad
in the tights and lace common to the 17th century, seated under an apple
tree with an apple about to land on his head. After being hit by one too
many apples,

 

 

 

he suddenly jumped up and shouted “Eureka! (borrowing
a phrase from Archimedes) I’ve invented gravity!” While this image is
more the stuff of Hollywood than historical fact, it contains some truth.
Newton did observe falling objects, such as apples, and read extensively
Galileo’s work on falling objects.

The breakthrough came when Newton reasoned that the force due to
gravity must decrease with the square of the distance from the attracting
body (Earth). In other words, an object twice as far away from Earth is
attracted only one fourth as much. Newton excitedly took observations of
the Moon to verify this model of gravity. Unfortunately, his
measurements consistently disagreed with his model by one-sixth.
Finally, in frustration, Newton abandoned his work on gravity. Years
later, however, he found that the value for Earth’s mass he had been using
in his calculations was off by exactly one-sixth. Thus, his model of gravity
had been correct all along! We call it Newton’s Law of Universal
Gravitation. “Universal” because we believe the same principle must
apply everywhere in the universe. In fact, much of modern cosmology—
all we know about the structure of the universe—depends on applying
this simple law. We can see it applied most simply in Figure 4.1.3-19.

 

Figure 4.1.3-18. Two Ice Skaters Demonstrate Newton’s Third Law.

 

 If they initially start
at rest and the first one pushes against the second, they’ll both go backward. The first skater
applied an action—pushing—and received an equal but opposite reaction.
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Figure 4.1.3-20. Earth and Moon in a Tug-
of-War. Because of gravity, the Earth and
Moon pull on each other with incredible force,
which causes tides on Earth.
  

Newton’s Law of Universal Gravitation.

 

The force of gravity between
two bodies is directly proportional to the product of their two masses and
inversely proportional to the square of the distance between them.

 

We can express this in symbolic shorthand as

(4.1.3-8)

where 

F

 

g

 

= force due to gravity (N)

G = universal gravitational constant = 6.67 × 10–11 N m2/kg2

m1, m2 = masses of two bodies (kg)

R = distance between the two bodies (m)

So what does this tell us? If we have two bodies, say Earth and the
Moon, the force of attraction equals the product of their two masses, times
a constant divided by the square of the distance between them. Let’s look
at some real numbers to see just how hard Earth tugs on the Moon and
vice versa, as shown in Figure 4.1.3-20. Earth’s mass, mEarth, is 5.98 × 1024

kg (give or take a couple of mountains!), and the Moon’s mass, mMoon, is
7.35 × 1022 kg. The average distance between the Earth and Moon is about
3.84 × 108 m. We already know the gravitational constant, G. Using the
relationship for gravitational force we just described, we find

 (or about 4.46 × 1019 lbf)

In other words, there’s a huge force pulling the Earth and Moon
together. But do we experience the result of this age-old tug-of-war? You
bet we do! The biggest result we see is in ocean tides. The side of Earth
closest to the Moon is attracted more than the side away from the Moon
(gravity decreases as the square of the distance). Thus, all the ocean water
on the side closest to the Moon swells toward the Moon; on the other side,
the water swells away from the Moon due to the conservation of angular
momentum as Earth rotates. Depending on the height and shape of the
ocean floor, tides can raise and lower the sea level in some places more
than 5 m (16 ft.). If you think about how much force it would take you to
lift half the ocean this much, the incredibly large force we computed
above begins to make sense.
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It’s important to remember that the force of gravity decreases as the
square of the distance between masses increases. This means that if you
want to weigh less, you should take a trip to the mountains! If you
normally live in Houston, Texas, (elevation ~0 ft.) and you take a trip to
Leadville, Colorado, (elevation 3048 m or 10,000 ft.), you won’t weigh as
much. That’s because you’re a bit farther away from the attracting body
(Earth’s center). But before you start packing your bags, look closely at
what is happening. Your weight

 

 will change because the force of gravity is
slightly less, but your 

 

mass

 

 won’t change. Remember, weight measures
how much gravity is pulling you down. Mass measures how much stuff
you have. So even though the force pulling down on the scale will be
slightly less, you’ll still have those unwanted bulges.

Because the gravitational force changes, the acceleration due to gravity
also changes. We can compute the acceleration due to gravity by
combining the relationships expressed in Newton’s Second Law of
Motion and Newton’s Law of Universal Gravitation. We know from
Newton’s Second Law (dropping vector notation because we’re
interested only in magnitudes) that

F = ma (4.1.3-9)

We can substitute this expression into Newton’s relationship for gravity
(Equation (4.1.3-8)) to get an expression for the acceleration of any mass
due to Earth’s gravity.

which simplifies to

For convenience, we typically combine G and the mass of the central body
(Earth in this case) to get a new value we call the 

 

gravitational parameter, 

 

µ
(Greek, small mu), where 

 

µ ≡

 

G m. For Earth, we denote this with a
subscript, 

 
µ

 Earth 
.

(4.1.3-10)

where 

a

 

g

 

= acceleration due to gravity (m/s

 

2

 

)

 

µ

 

Earth

 

≡

 

 G m

 

Earth

 

 = 3.986 

 

×

 

 10

 

14

 

 m

 

3

 

/s

 

2

 

R = distance to Earth’s center (m)

If we substitute the values for 

 

µ

 

Earth

 

 and use Earth’s mean radius
(6,378,137.0 m) we get a

 

g

 

 = 9.798 m/s

 

2

 

 at Earth’s surface, obviously
pulling toward Earth’s center. 

 

Note:

 

 we usually use kilometers instead of
meters in this equation, because Earth’s radius is so large.
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Section Review
Key Concepts

The mass of an object denotes three things about it

• How much “stuff” it has

• How much it resists motion—its inertia

• How much gravitational attraction it has

Newton’s three laws of motion are

• First Law. A body continues in its state of rest, or in uniform motion
to change that state by forces impressed upon it.
- The first law says that linear and angular momentum remain unc

external force or torque, respectively
- Linear momentum, , equals an object’s mass, m, times its veloc
- Angular momentum, , is the product of an object’s moment of

angular motion) and its angular velocity, 
- We express angular momentum as a vector cross product of an o

rotation,  (called its moment arm), and the product of its mass, m
velocity, 

• Second Law. The time rate of change of an object’s momentum equ

• Third law. When body A exerts a force on body B, body B exerts an e

Newton’s Law of Universal Gravitation. The force of gravity between
directly proportional to the product of the two masses and inversely p
distance between them (R).

• G = universal gravitational constant = 6.67 × 10–11 Nm2/kg2

• We often use the gravitational parameter, µ, to replace G and m. µ ≡
- The gravitational parameter of Earth, µEarth, is

 = 3.986 × 1014 m3/s2, or, using kilometer instea

km3/s2 

p
H

ΩΩΩΩ

R
V

µEarth G  m Earth ≡
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Figure 4.1.3-21. Conservation of Momen-
tum.

 

 

 

Two people on ice skates demonstrate the
concept of conservation of linear momentum.
Initially the two are at rest; thus, the momentum
of the system is zero. But as one skater pushes
on the other, they both start moving in opposite
directions. Adding their two momentum vectors
together still gives us zero; thus, momentum of
the system is conserved.
4.1.3.3 Laws of Conservation

In This Section You’ll Learn to...

For any mechanical system, basic properties, such as momentum and
energy, remain constant. In physics we say that if a certain property or
quantity remains unchanged for a given system, that property or quantity
is conserved. So let’s take a look at two basic properties—momentum and
energy—to see how they’re conserved.

Momentum
One very important implication of Newton’s Third Law has to do with

the amount of momentum in a system. Newton’s Third Law implies the
total momentum in a system remains unchanged, or is conserved. We call
this conservation of momentum.

To understand this concept let’s go back to our ice skating example.
When the two skaters faced each other, neither of them was moving, so
the total momentum of the system was zero. Then the first one pushed on
the second, and he moved in one direction with some speed, while she
moved in the other. Their speeds won’t be the same unless their masses
are equal. The first skater moves in one direction with a speed that
depends on his mass, while the other moves in the opposite direction
with a speed depending on her mass. Now, the second skater’s momen-
tum (the product of her mass and velocity) is equal in magnitude, but
opposite in direction, to his. 

Depending on how we define our frame of reference, the first skater’s
momentum could be negative while the other’s is positive. Adding the
momentums, gives us zero, so, the original momentum of the system (the
two skaters) hasn’t changed. Thus, as Figure 4.1.3-21 shows, we say that
the system’s total momentum is conserved. Example 4-4 also shows this
principle in action.

This conservation principle works equally well for angular momen-
tum. You’ve probably seen a good example of this with figure skaters,
who always include a spin in their routines. Remember, once an object (or
skater) begins to spin, it has angular momentum. 

By watching these skaters closely, you may see them move their arms
outward or inward to vary their spin rate. How does this change their
spin rate? We know from Equation (4.1.3-2) that angular momentum, ,
equals the product of the moment of inertia, I, and the spin rate, . The
moment of inertia of an object is proportional to its distance from the axis
of rotation. To change their moment of inertia, skaters move their arms
outward or inward, which increases or decreases the radius, thereby

Describe the basic laws of conservation of momentum and energy 
and apply them to simple problems

H
Ω
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Figure 4.1.3-22. Spinning Slowly. Skaters
extend their arms to increase moment of
inertia—spinning more slowly.

Figure 4.1.3-23. Spinning Quickly. Skaters
bring in their arms to decrease moment of
inertia—spinning faster. Total angular
momentum is the same in both cases.
  

changing I. Because momentum is conserved, it must stay constant as
moment of inertia changes. But the only way this can happen is for the
angular velocity, , to change. Thus, if skaters put their arms out, as in
Figure 4.1.3-22, they increase their moment of inertia and spin slower to
maintain the same angular momentum. If they bring their arms in, as in
Figure 4.1.3-23, they decrease their moment of inertia and increase the
spin rate to maintain the same angular momentum.

 

Energy

 

We’ve all had those days when somehow we just don’t seem to have
any energy. But what exactly is energy? Energy can take many forms
including electrical, chemical, nuclear, and mechanical. For now, let’s deal
only with mechanical energy because it’s the most important for
understanding motion. If you’ve jumped off a platform, climbed a ladder,
or played with a spring, you’ve experienced mechanical energy. 

 

Total
mechanical energy, E

 

, comes from an object’s position and motion. It’s
composed of 

 

potential energy, PE

 

, which is due entirely to an object’s
position and 

 

kinetic energy, KE

 

, which is due entirely to the object’s
motion. Total mechanical energy can be only potential, kinetic, or some
combination of both

(4.1.3-11)

where
E = total mechanical energy (kg m

 

2

 

/s

 

2

 

)
PE = potential energy (kg m

 

2

 

/s

 

2

 

)
KE = kinetic energy (kg m

 

2

 

/s

 

2

 

)

To better understand what the trade-off between potential and kinetic
energy means, we need to understand where it takes place. We say that
gravity is a 

 

conservative field

 

—a field in which total energy is 

 

conserved

 

.
Thus, the sum of PE and KE, or the total E, in a conservative field is
constant. 

Potential energy is the energy an object in a conservative field has
entirely because of its position. We call it “potential” energy because we
don’t really notice it until something changes. For example, if you pick up
a 1 kg (2.2 lb.) mass and raise it above your head, it’s higher position
gives it more “potential” energy. This potential is realized when you drop
the mass and it lands on your foot! To quantify this form of energy, we
must derive an expression for the amount of work done by raising the
object above a reference point (usually Earth’s surface) against the force
of gravity. If we raise the object a small distance (a few hundred meters or
less), we can assume gravity is constant and we get

Ω

E = KE + PE
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Figure 4.1.3-24. Potential Energy (PE). PE
increases as we get farther from Earth’s center
by becoming less negative. It’s as if we’re
climbing out of a deep well.
  

(4.1.3-12)

where
m = mass (kg)
a

 

g

 

= acceleration due to gravity (m/s

 

2

 

)
h = height above a reference point (m)

Thus, to compute an object’s potential energy after raising it a small
distance, we need to know three things: the amount of mass, m; its
position above a reference point, h; and the acceleration due to gravity, a

 

g

 

,
at that reference point. But, if we want to find a spacecraft’s potential
energy in orbit high above Earth, we can’t assume gravity is constant, and
we can’t use Earth’s surface as a convenient reference point anymore. Let’s
see how we find potential energy in an orbit.

As we know from the last section, the gravitational acceleration varies
depending on an object’s distance from Earth’s center, R. To derive the
potential energy equation for this gravitational field, we must determine
the amount of work it would take to move the spacecraft from Earth’s
center to its orbital position, a distance of R. That derivation yields

(4.1.3-13)

where 
PE = spacecraft’s potential energy (kg km

 

2

 

/s

 

2

 

)
m = spacecraft’s mass (kg)

 

µ

 

= gravitational parameter (km

 

3

 

/s

 

2

 

) = 3.986 

 

×

 

 10

 

5

 

 km

 

3

 

/s

 

2

 

 

 

R = spacecraft’s distance from Earth’s center (km)

Notice the negative sign in Equation (4.1.3-13). This sign is due to the
convention we’re using, which defines R to be positive outward from
Earth’s center. We know potential energy should increase as we raise a
spacecraft to a higher orbit, so is this still consistent? Yes! As we raise our
spacecraft’s orbit, R gets bigger, and PE gets less negative—which means
it gets bigger too. Remember, for potential energy, –3 is a bigger quantity
than –4 because it’s less negative. (This approach is analogous to heat: an
ice cube at –3 degrees Celsius is “hotter” than one at –4 degrees Celsius.)
At the extreme, when R reaches infinity (or close enough), PE approaches
zero.

One way to visualize this strange situation is to think about Earth’s
center being at the bottom of a deep, deep well (Figure 4.1.3-24). At the
bottom of the well, R is zero, so PE is at a minimum (its largest negative
value, PE = –

 

∞

 

). As we begin to climb out of the well, our PE begins to
increase (gets less negative) until we reach the lip of the well at R near
infinity. At this point, our PE is effectively zero, and for all practical
purposes, we have left Earth’s gravitational influence. Of course, we
never really reach an “infinite” distance from Earth, but as we’ll see when
we discuss interplanetary travel, we essentially leave Earth’s “gravity
well” at a distance of about one million km (621,400 mi.).

PE m  a g h=

PE mµ
R

---------–=
4.1.3-19



                

Figure 4.1.3-25. Mechanical Energy is
Conserved. The total mechanical energy, the
sum of kinetic and potential energy, is constant
in a conservative field. We can show this with a
simple swing. At the bottom of the arc, speed is
greatest and height is lowest; hence, KE is at
the maximum and PE is at a minimum. As the
swing rises to the top of the arc, KE trades for
PE until it stops momentarily at the top where
PE is maximum and KE is zero.
If you have a 1 kg mass suspended above your head, how do you
realize the “potential” of its energy? You let go! Gravity will then cause
the mass to accelerate downward, so when it hits the ground (and
hopefully not your head or your foot, enroute), it’s moving at
considerable speed and thus has energy of a different kind—energy of
motion, which we call kinetic energy. Similar to linear momentum, kinetic
energy is solely a function of an object’s mass and its velocity.

(4.1.3-14)

where 

KE = kinetic energy (kg km2/s2)

m = mass (kg)

V = velocity (km/s)

As we said, total mechanical energy in a conservative field (such as a
gravitational field) stays constant. But, a spacecraft in orbit may get close
to Earth during part of its orbit and be far away in another part. So, how
does it maintain a constant mechanical energy? It must trade the potential
energy it loses as it moves closer, for kinetic energy (increased velocity).
Then, as it goes farther away, it trades back—kinetic energy goes down,
as the potential energy goes up. 

The endless trade-off between PE and KE to make this happen goes on
all around us—but we often don’t notice it. We’ve all played on a simple
playground swing like the one in Figure 4.1.3-25. As we swing back and
forth, we constantly trade between KE and PE. At the bottom of the arc,
we are moving the fastest, so our KE is at a maximum and PE is at a
minimum. As we swing up, our speed diminishes until, at the top of the
arc, we actually stop briefly. At this point, our KE is zero because we’re
not moving (velocity is zero), but our PE is at a maximum. The reverse
happens as we swing back, this time turning our PE back into energy of
motion. If it weren’t for friction in the frame attachments and our own
wind resistance, once we started on a swing, we’d swing forever even
without “pumping.”

We can now combine KE and PE to get a new expression for the total
mechanical energy of our orbiting spacecraft

(4.1.3-15)

where

E = total mechanical energy (kg km2/s2)

m = mass (kg)

V = velocity (km/s)

µ = gravitational parameter (km3/s2)

R = position (km)

KE 1
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Section Review
Key Concepts

A property is conserved if it stays 

In the absence of outside forces, lin

A conservative field, such as gravi

Total mechanical energy, E, is the s

• Kinetic energy, KE, is energy of 

• Potential energy, PE, is energy o
  

Later we’ll use this expression to develop some useful tools for analyzing
orbital motion. 

constant in a system

ear and angular momentum are conserved

ty, is one in which total mechanical energy is conserved

um of potential and kinetic energies

motion

f position
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Figure 4.1.3-26. Motion Analysis Process
(MAP) Checklist. Originally described in
Section 4.1.3.1 (Figure 4.1.3-6), this process
applies to balls in flight or spacecraft in orbit.
  

4.1.3.4 The Restricted Two-body 
Problem

 

In This Section You’ll Learn to...

 

Earlier, we outlined a general approach to analyzing the motion of an
object called the MAP, shown again in Figure 4.1.3-26. There we described
the motion of a baseball. Now we can use the first three steps of this same
method to understand the motion of any object in orbit. A special
application of the MAP is the 

 

restricted two-body problem

 

. Why restricted?
As we’ll see later in this section, we must restrict our analysis with
assumptions we need to make our lives easier. Why two bodies? That’s
one of the assumptions. Why a problem? Finding an equation to
represent this motion has been a classic problem solved and refined by
students and mathematicians since Isaac Newton. In this section, we’ll
rely on the work of the mathematicians who have come before us. So at
the end of this section you’ll say, “The motion of two bodies? Hey, no
problem!”

 

Coordinate Systems

 

To be valid, Newton’s laws must be expressed in an inertial reference
frame, meaning a frame that is not accelerating. To illustrate this, let’s
suppose we want to describe the flight of a baseball we toss and catch
while we’re driving in our car. We see the ball go up and down with
respect to us. But that’s not the whole story. Our car may be accelerating
with respect to a police car behind us. Our car and the police car may be
accelerating with respect to Earth’s surface. And of course we must
consider Earth’s motion spinning on its axis, Earth’s motion around the
Sun, the Sun’s motion in the Galaxy, the Galaxy’s motion through the
universe, and the expansion of the universe! These are all accelerating
frames of reference for the ball’s motion, which complicate our attempt to
describe this motion using Newton’s laws. 

So we can see how this reference frame stuff can get complicated very
quickly. Indeed, from astronomical observations, it looks like everything
in the universe is accelerating. So how can we find any purely non-
accelerating reference? We can’t. To apply Newton’s laws to our ball, we
must select a reference frame that’s close enough to, or “sufficiently,”
inertial for our problem.

  

Explain the approach used to develop the restricted two-body 
equation of motion, including coordinate systems and assumptions

  

Explain how the solution to the two-body equation of motion 
dictates orbital geometry

  

Define and use the terms that describe orbital geometry
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Figure 4.1.3-28. Vernal Equinox Direction.
The vernal equinox direction is the principal
direction for the geocentric-equatorial coordi-
nate system. It’s found by drawing a line from
Earth through the Sun on the first day of
Spring, usually March 21.
  

Any reference frame is just a collection of unit vectors at right angles to
each other that allows us to specify the magnitude and direction of other
vectors

 

, 

 

such as a spacecraft’s position and velocity. This collection of unit
vectors allows us to establish the components of vectors in 3-D space. By
rigidly defining these unit vectors, we define a coordinate system. 

To create a coordinate system we need to specify four pieces of informa-
tion—an origin, a fundamental plane, a principal direction, and a third axis,
as shown in Figure 4.1.3-27. The 

 

origin

 

 defines a physically identifiable
starting point for the coordinate system. The other three parameters fix the
orientation of the frame. The 

 

fundamental plane

 

 contains two axes of the
system. Once we know the plane, we can establish the first axis by defining
a unit vector that starts at the origin and is perpendicular to this plane. The
unit vector in this direction at the origin is one axis. Next, we need a 

 

prin-
cipal direction

 

 within the plane, which we define by pointing a unit vector
toward some visible, distant object, such as a star. Now that we have two
directions (the principal direction and an axis perpendicular to the
fundamental plane), we can find the third axis using the right-hand rule.

Remember—coordinate systems should make our lives easier. If we
choose the correct coordinate system, developing the equations of motion
can be simple. If we choose the wrong system, it can be nearly impossible.

For Earth-orbiting spacecraft, we’ll choose a tried-and-true system that
we know makes solving the equations of motion relatively easy. This

 

geocentric-equatorial coordinate system

 

 has these characteristics
• Origin—Earth’s center (hence the name 

 

geo

 

centric)
• Fundamental plane—Earth’s equator (hence geocentric-

 

equatorial

 

). 
Perpendicular to the plane—North Pole direction

• Principal direction—vernal equinox direction found by drawing a line 
from Earth to the Sun on the first day of Spring, as shown in Figure 
4.1.3-28. While this direction may not seem “convenient” to you, it’s 

Figure 4.1.3-27. Defining a Coordinate System. We define coordinate systems by
selecting a convenient (1) origin; (2) fundamental plane containing the origin and an axis
perpendicular to the plane; (3) principal direction within the plane; and (4) third axis using the
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Figure 4.1.3-29. Geocentric-equatorial
Coordinate System. We define this system by

• Origin—Earth’s center 

• Fundamental plane—equatorial plane

• Perpendicular to plane—North Pole

• Principal direction—vernal equinox ( )

We use this coordinate system for analyzing
the orbits of Earth-orbiting spacecraft.

Figure 4.1.3-30. Possible Forces on a
Spacecraft. We can brainstorm all the possible
forces on a spacecraft to include Earth’s
gravity, drag, thrust, third-body gravity, and
other forces.
  

significant to astronomers who originally defined the system. Plus it 
beats any alternatives by a long way, mostly because they move.

• Third axis found using the right-hand rule

Figure 4.1.3-29 shows the entire coordinate system.

Equation of Motion
Using the geocentric-equatorial coordinate system, we can safely apply

Newton’s Second Law to examine the external forces affecting the system,
or in this case, a spacecraft. So let’s place ourselves on an imaginary
spaceship in orbit around Earth and see if we can list the forces on our ship.

• Earth’s gravity (Newton wouldn’t let us forget this one)

• Drag—if we’re a little too close to the atmosphere

• Thrust—if we fire rockets

• 3rd body—gravity from the Sun, Moon, or planets

• Other—just in case we miss something

Summing all these forces, shown in Figure 4.1.3-30, we get with the
following equation of motion

(4.1.3-16)

If we substituted mathematical expressions for the various forces and
tried to devise a solution to the equation, we would create a difficult
problem—not to mention an enormous headache. So let’s examine some
reasonable assumptions we can make to simplify the problem.

Simplifying Assumptions
Luckily, we can assume some things about orbital motion that will

simplify the problem, but they will “restrict” our solution to cases in
which these assumptions apply. Fortunately, this includes most of the
situations we’ll use. Let’s consider the forces on a spacecraft in orbit and
assume

• The spacecraft travels high enough above Earth’s atmosphere that 
the drag force is small, 

• The spacecraft won’t maneuver or change its path, so we ignore the 
thrust force, 

• We are considering the motion of the spacecraft close to Earth, so we 
ignore the gravitational attraction of the Sun, the Moon, or any other 
third body, . (That’s why we call this the two-body 
problem.)

• Compared to Earth’s gravity, other forces such as those due to solar 
radiation, electromagnetic fields, etc., are negligible, 

Fexternal∑ Fgravity Fdrag Fthrust F3rd  body F other + + + + ma= =

Fdrag 0≅

Fthrust 0≅

F3rd  body 0 ≅

Fother 0≅
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Figure 4.1.3-31. The Force of Gravity. In the
restricted two-body problem, we reduce the
forces acting on a spacecraft to a single force—
Earth’s gravity.
• Earth’s mass is much, much larger than the mass of any spacecraft, 
mEarth >> mspacecraft

• Earth is spherically symmetrical with uniform density, so we treat it 
as a point mass. Thus, we mathematically describe Earth’s gravity as 
acting from its center.

• The spacecraft’s mass is constant, ∆m = 0, so Equation (4.1.3-7), 
applies

• The geocentric-equatorial coordinate system is sufficiently inertial, so 
that Newton’s laws apply

After all these assumptions, we’re left with gravity as the only force, so

our equation of motion becomes , as shown in

Figure 4.1.3-31. Now we can apply Newton’s Law of Universal
Gravitation in vector form

(4.1.3-17)

Substituting the force of gravity equation into the equation of motion,
we get

and dividing both sides by m, we arrive at the restricted two-body equation
of motion

(4.1.3-18)

where

= spacecraft’s acceleration (km/s2)

µ = gravitational parameter (km3/s2) = 3.986 × 10

 

5

 

 km

 

3

 

/s

 

2 

 

for 
Earth

= spacecraft’s position vector (km)

R = magnitude of the spacecraft’s position vector (km)

[

 

Note:

 

 we use the engineering convention for the second derivative of 
with respect to time, which is , better known as acceleration, .]

What can the two-body equation of motion tell us about the movement
of a spacecraft around Earth? Unfortunately, in its present form—a
second-order, non-linear, vector differential equation—it doesn’t help us
visualize anything about this movement. So what good is it? To
understand the significance of the two-body equation of motion, we must
first “solve” it, using a rather complex mathematical derivation. When
the smoke clears, we’re left with an expression for the magnitude of the

Fexternal∑ Fgravity ma= =

Fgravity
µm

R2---------R
R
----–=

Fgravity
µm

R2--------- R
R
----– ma mR

..
= = =

R
..

µ

R2------ R
R
----+ 0=

R
..

R

R
R
..

a
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Figure 4.1.3-32. Conic Sections. The
solution to the restricted, two-body equation of
motion gives the polar equation for a conic
section. Conic sections are found by slicing
right cones at various angles.
  

position vector (not the velocity) of an object in space in terms of some
odd, new variables.

where

R = magnitude of the spacecraft’s position vector, 

k

 

1

 

= constant that depends on µ, , and 

k

 

2

 

= constant that depends on µ, , and 

 

ν

 

= (Greek letter “nu”) polar angle measured from an orbit’s 
principal axis to 

This equation is the solution to the restricted, two-body equation of
motion and describes the spacecraft’s location, R, in terms of two
constants and a polar angle, 

 

ν

 

. You may recognize that this equation also
represents a general relationship for any 

 

circle

 

, 

 

ellipse

 

, 

 

parabola

 

, or

 

hyperbola

 

—commonly known as 

 

conic sections

 

, shown in Figure 4.1.3-32.
Now, here’s the really significant part of all this—we just proved Kepler’s
Laws of Planetary Motion! Based on Brahe’s data, Kepler showed that the
planets’ orbits were ellipses but couldn’t say why. We’ve just shown why:
any object moving in a gravitational field must follow one of the conic
sections. In the case of planets or spacecraft in orbit, this path is an ellipse
or a circle (which is just a special case of an ellipse).

Now that we know orbits must follow conic section paths, we can look
at some ways to describe the size and shape of an orbit.

 

Orbital Geometry

 

Because we’re mainly interested in spacecraft orbits, which we know
are elliptical, let’s look closer at elliptical geometry. Using Figure 4.1.3-33
as a reference, let’s define some important 

 

geometrical parameters

 

 for an
ellipse.

• R is the radius from the focus of the ellipse (in this case, Earth’s 
center) to the spacecraft

• F and F' are the 

 

primary

 

 (occupied) and 

 

vacant

 

 (unoccupied) 

 

foci. 
Earth’s center is at the occupied focus.

• Rp is the radius of periapsis (radius of the closest approach of the 
spacecraft to the occupied focus); it’s called the radius of perigee when 
the orbit is around Earth

• Ra is the radius of apoapsis (radius of the farthest approach of the 
spacecraft to the occupied focus); it’s called the radius of apogee when 
the orbit is around Earth

• 2a is the major axis or the length of the ellipse. One-half of this is “a,” 
or the semimajor axis (semi means one half).

R
k1

1 k2 νcos+
----------------------------=

R

R V

R V

R
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Figure 4.1.3-33. Geometry of an Elliptical Or
  

(4.1.3-19)

• 2b is the minor axis or width of the ellipse. One-half of this is “b,” or 
the 

 

semiminor axis

 

.

• 2c is the distance between the foci, R

 

a

 

 – R

 

p

 

•

 

ν

 

 is the 

 

true anomaly

 

 or polar angle measured from perigee to the 
spacecraft’s position vector, , in the direction of the spacecraft’s 
motion. It locates the spacecraft in the orbit. For example, if 

 

ν

 

 = 180° 
the spacecraft is 180° from perigee, putting it at apogee. The range for 
true anomaly is 0° to 360°. 

•

 

φ 

 

is the 

 

flight-path angle

 

, measured from the local horizontal to the 
velocity vector, . At the spacecraft the local horizontal is a line 
perpendicular to the position vector, . When the spacecraft travels 
from perigee to apogee (outbound), its velocity vector is always 
above the local horizon (gaining altitude), so 

 

φ

 

 > 0°. When it travels 
from apogee to perigee (inbound), its velocity vector is always below 
the local horizon (losing altitude), so 

 

φ

 

 < 0°. At exactly perigee and 
apogee of an elliptical orbit, the velocity vector is parallel to the local 
horizon, so 

 

φ

 

 = 0. The maximum value of the flight-path angle is 90°. 

• e is the  eccentricity  , which is the ratio of the distance between the foci 
(2c) to the length of the ellipse (2a)

bit. With these parameters, we completely define the size and shape of the orbit. 

= spacecraft’s position vector, measured from 
Earth’s center

= spacecraft’s velocity vector

F and F' = primary and vacant foci of the ellipse

Rp = radius of perigee (closest approach)

Ra = radius of apogee (farthest approach)

2a = major axis

2b = minor axis

2c = distance between the foci

a = semimajor axis

b = semiminor axis

ν = true anomaly

φ = flight-path angle

R

V

a
Ra Rp+

2
-------------------=

R

V
R

e 2c
2a
------=
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Figure 4.1.3-34. Circle. A circle is just a
special case of an ellipse.

Figure 4.1.3-35. Parabola. A parabolic
trajectory is a special case which leaves Earth
• Eccentricity defines the shape or type of conic section. Eccentricity is a
medieval term representing a conic’s degree of noncircularity
(meaning “out of center”). Because circular motion was once
considered perfect, any deviation was abnormal, or eccentric (maybe
you know someone like that). Because the distance between the foci in
an ellipse is always less than the length of the ellipse, its eccentricity is
between 0 and 1. A circle has e = 0. A very long, narrow ellipse has e
approaching 1. A parabola has e = 1 and a hyperbola has e > 1.

With all these geometrical parameters defined, let’s look at our polar
equation of a conic and substitute for the constants k1 = a (1 – e2) and
k2 = e. Thus, we have

(4.1.3-20)

where
R = magnitude of the spacecraft’s position vector (km)
a = semimajor axis (km)
e = eccentricity (unitless)
ν = true anomaly (deg or rad)

To determine the distances at closest approach, Rp, and farthest
approach, Ra, we can use this equation.

At ν = 0°, R = Rp =  = a (1 – e)

At ν = 180°, R = Ra =  = a (1 + e)

Looking at the geometry of an ellipse, we can see that the length of the
ellipse, 2a, equals (Ra + Rp), and the distance between the foci, 2c, is (Ra –
Rp). Now, if we want to compute the orbit’s eccentricity based on the radii
of perigee and apogee, we can use the second part of Equation (4.1.3-21).

e = (4.1.3-21)

Parameters for the ellipse also apply to circular orbits, parabolic
trajectories, and hyperbolic trajectories. Figure 4.1.3-34 shows a circular
orbit, where the radius from Earth’s center is constant and equal to the
semimajor axis. Therefore, this orbit has no apogee or perigee, and its
eccentricity is zero. The flight path angle is always zero.

The parabola in Figure 4.1.3-35 represents a minimum escape trajectory
or a path that just barely takes a spacecraft away from Earth, never to
return. So there is no apogee and no empty focus. Thus, the semimajor
axis and the distance between the foci are infinite. We say the eccentricity,
e = 1. The true anomaly ranges from 0° to less than 180° on the outbound
path. The flight path angle is greater than zero. Of course, if a spacecraft is
inbound on a parabolic trajectory, its true anomaly is greater than 180°

R a 1 e2–( )
1 e νcos+
-------------------------=

a 1 e2–( )
1 e 0°( )cos+( )

-------------------------------------

a 1 e2–( )
1 e 180°( )cos+( )

-------------------------------------------

2c
2a
------

Ra Rp–

Ra Rp+
-------------------=
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Figure 4.1.3-36. Hyperbola. We use a
hyperbolic trajectory for interplanetary missions.
Notice a real trajectory is around the occupied
focus and an imaginary, mirror-image trajectory
is around the vacant focus.
until it passes perigee, then it resets to 0° and grows to almost 180°. And
its flight path angle is less than zero until it passes perigee.

The hyperbola in Figure 4.1.3-36 also represents an escape trajectory, so
it also has no apogee. It’s an unusual shape with a different sign
convention. Because the length of the hyperbola (distance between the
“ends”) bends back on itself, or is measured outside the conic, we define
this distance, 2a, as negative. The same convention also applies for the
distance between the foci, 2c, so 2c is also negative. But the magnitude of
2c is always larger than the magnitude of 2a, so the eccentricity is greater
than 1.0. The true anomaly ranges from 0° to less than 180° on the
outbound path and greater than 180° to 0° on the inbound path. The flight
path angle is greater than 0° on the outbound path and less than 0° on the
inbound path. Table 4.1.3-1 summarizes these parameters. 

Table 4.1.3-1.  A Summary of Parameters for Conic Sections.

Conic Section
a = Semimajor 
Axis

c = One-half the Distance 
between Foci e = Eccentricity

circle a > 0 c = 0 e = 0

ellipse a > 0 0 < c < a 0 < e < 1

parabola a = ∞ c = ∞ e = 1

hyperbola a < 0 |a| < |c| > 0 e > 1
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n, we form the restricted two-body 

ion is the geocentric-equatorial 

e

n treat it mathematically as a point 
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 equation for a conic section

1 summarizes parameters for conic 
Section Review
Key Concepts

Combining Newton’s Second Law and his Law of Universal Gravitatio
equation of motion

• The coordinate system used to derive the two-body equation of mot
system
- Origin—Earth’s center
- Fundamental plane—equatorial plane
- Direction perpendicular to the plane—North Pole direction
- Principal direction—vernal equinox direction

• In deriving this equation, we assume
- Drag force is negligible
- Spacecraft is not thrusting
- Gravitational pull of third bodies and all other forces are negligibl
- mEarth >> mspacecraft

- Earth is spherically symmetrical and of uniform density and we ca
mass

- Spacecraft mass is constant, so ∆m = 0
- The geocentric-equatorial coordinate system is sufficiently inertia

Solving the restricted two-body equation of motion results in the polar

Figure 4.1.3-33 shows parameters for orbital geometry, and Table 4.1.3-
sections
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4.1.3.5 Constants of Orbital Motion

In This Section You’ll Learn to...

By now you’re probably convinced that, with all these flight-path
angles, true anomalies, and ellipses flying around, there is nothing
consistent about orbits. Well, take heart because we do have constants in
astrodynamics. We saw in our discussion of motion in a conservative field
that mechanical energy and momentum are conserved. Because orbital
motion occurs in a conservative gravitational field, spacecraft conserve
mechanical energy and angular momentum. So, now let’s see how these
principles provide valuable tools for studying orbital motion.

Specific Mechanical Energy
In an earlier section, we referred to equations of motion being like

crystal balls, in that they allow us to gaze into the future to predict where
an object will be. Mechanical energy provides us with one such crystal
ball. Recall in defining mechanical energy, we add potential energy, PE, to
kinetic energy, KE. Together, they form a relationship between a
spacecraft’s mass, m, its position, R, its velocity, V, and the local
gravitational parameter, µ (3.986 × 105 km3/s2 for Earth).

(4.1.3-22)

To generalize this equation, so we don’t have to worry about mass, let’s
divide both sides of the equation by m. Doing so defines a new flavor of
mechanical energy called specific mechanical energy, ε, which doesn’t
depend on mass. Thus, we can talk about the energy in a particular orbit,
whether the orbiting object is a golf ball or the International Space
Station. Specific mechanical energy, ε, is simply the total mechanical
energy divided by a spacecraft’s mass

(4.1.3-23)

where  means “defined as,” or

(4.1.3-24)

Define the two constants of orbital motion—specific mechanical 
energy and specific angular momentum

Apply specific mechanical energy to determine orbital velocity and 
period

Apply the concept of conservation of specific angular momentum 
to show an orbital plane remains fixed in space

E 1
2
---mV2 µm

R
---------–=

ε
E
m
-----≡

≡

ε
V2

2
------ µ

R
----–=
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Figure 4.1.3-37. Trading Energy in an
Orbit. An orbit is just like a swing. PE and KE
trade-off throughout the orbit, so their sum is
constant.
where
ε = spacecraft’s specific mechanical energy (km2/s2)
V = spacecraft’s velocity (km/s)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth
R = spacecraft’s distance from Earth’s center (km)

Because the specific mechanical energy is conserved, it must be the
same at any point along an orbit! As a spacecraft approaches apogee, it is
gaining altitude, meaning its R, or distance from Earth’s center, increases.
This increase in R means it gains potential energy—which actually means
the potential energy (PE) gets less negative (because of the way we define
it). At the same time, the spacecraft’s speed is decreasing and hence it is
losing kinetic energy (KE). When it reaches the highest point, its PE is at a
maximum. However, because its speed is the slowest at apogee, KE is at a
minimum. But the sum of PE and KE—specific mechanical energy—
remains constant.

As the spacecraft passes apogee and starts toward perigee, it begins to
trade its PE for KE. So, its speed steadily increases until it reaches perigee,
where its speed is fastest and its KE is maximum. Again, the sum of
potential and kinetic energy—specific mechanical energy—remains
constant. Figure 4.1.3-37 illustrates these relationships.

The fact that the specific mechanical energy is constant gives us a
tremendously powerful tool for analyzing orbits. Look again at the
relationship for specific mechanical energy, ε. Notice that ε depends only
on position, R, velocity, V, and the local gravitational parameter, µ. This
means if we know a spacecraft’s position and velocity at any point along its
orbit, we know its specific mechanical energy for every point on its orbit. 

Another important concept to glean out of the constancy of orbital
energy is the relationship between R and V. Assume we know the energy
for an orbit. Then, at any given position, R, on that orbit, there is only one
possible velocity, V! Thus, if we know the orbital energy and R, we can
easily find the velocity at that point. Simply rearranging the relationship
for energy gives us an extremely useful expression for velocity.

(4.1.3-25)

where
V = spacecraft’s velocity (km/s)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth
R = spacecraft’s distance from Earth’s center (km)
ε = spacecraft’s specific mechanical energy (km2/s2)

We often use this equation to determine velocities while analyzing
orbits. For example, during space missions we often have to move space-
craft from one orbit to another. We can use this relationship to determine
how much we must change the velocity to “drive” over to the new orbit. 

V 2 µ
R
---- ε+ 
 =
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Recall from our discussion of conic-section geometry, one parameter
represents a spacecraft’s mean, or average, distance from the primary
focus. This parameter is the semimajor axis, a. We can develop a new
relationship for specific mechanical energy which depends only on a and µ.

(4.1.3-26)

where
ε = spacecraft’s specific mechanical energy (km2/s2)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth
a = semimajor axis (km)

This means simply knowing the semimajor axis of a spacecraft’s orbit tells
us its specific mechanical energy. We can also learn the type of trajectory
from the sign of the specific mechanical energy, ε. For a circular or elliptical
orbit, ε is negative (because a is positive). For a parabola, ε = 0 (because a =
∞). For a hyperbola, ε is positive (because a is negative). These are
important points to keep in mind as we work orbital problems. If the sign
for ε is wrong, the answer probably will be wrong.

Another benefit to knowing a value for energy is that we can
determine orbital period. The orbital period, P, is the time it takes for a
spacecraft to revolve once around its orbit. From Kepler’s Third Law of
Planetary Motion, P2 is proportional to a3, where “a,” is the semimajor
axis. Using this relationship, we can derive an expression for the orbital
period

(4.1.3-27)

where 
P = period (seconds)
π = 3.14159. . .(unitless)
a = semimajor axis (km)
µ = gravitational parameter (km3/s2) = 3.986 × 105 km3/s2 for 

Earth

Notice that period only has meaning for “closed” conics (circles or
ellipses). Period is infinite for a parabola, whose semimajor axis is infinite,
and it’s an imaginary number for a hyperbola, whose semimajor axis is
negative. 

Specific mechanical energy, ε, is a very valuable constant of spacecraft
motion. With a single observation of position and velocity, we learn much
about a spacecraft’s orbit.

But ε gives us only part of the story. It tells us the orbit’s size but
doesn’t tell us anything about where the orbit is in space. For insight into
that important bit of information we need to look at the angular
momentum. 

ε µ
2a
------–=

P 2π
a3

µ
-----=
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Figure 4.1.3-38. Specific Angular
Momentum. The specific angular momentum
vector, , is perpendicular to the orbital plane
defined by  and .

h
R V
Specific Angular Momentum
Recall from our discussion in Section 4.1.3.2 that we can find angular

momentum from Equation (4.1.3-3).

Once again, to uncomplicate our life, we divide both sides of the equation
by the mass, m, of the object we’re investigating. Doing this, we define the
specific angular momentum, , as

where
≡ means “defined as,” or

(4.1.3-28)

where
= spacecraft’s specific angular momentum vector (km2/s)

= spacecraft’s position vector (km)

= spacecraft’s velocity vector (km/s)

Notice that specific angular momentum is the result of the cross
product between two vectors: position and velocity. Recall from geometry
that any two lines define a plane. So in this case,  and  are two lines
(vectors having magnitude and direction) that define a plane. We call this
plane containing  and , the orbital plane. Because the cross product of
any two vectors results in a third vector that is perpendicular to the first
two, the angular momentum vector  must be perpendicular to  and

. Figure 4.1.3-38 shows , , and .
Here’s where we need to apply a little deductive reasoning and

consider the logical consequence of the facts we know to this point. First
of all, as we saw in Section 4.1.3.3, angular momentum and, hence,
specific angular momentum are constant in magnitude and direction.
Second,  and  define the orbital plane. Next,  is perpendicular to
the orbital plane. Therefore, if  is always perpendicular to the orbital
plane, and  is constant, the orbital plane must also be constant. This
means that in our restricted, two-body problem the orbital plane is
forever frozen in inertial space! However, in reality, slight disturbances
cause the orbital plane to change gradually over time.

H R mV×=

h

h H
m
-----≡

h R V×=

h

R

V

R V

R V

h R
V R V h

R V h
h

h
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Section Review
Key Concepts

In the absence of any force other t

• Specific mechanical energy, ε

• Specific angular momentum, 

Specific mechanical energy, ε, is d

• ε < 0 for circular and elliptical o

• ε = 0 for parabolic trajectories

• ε > 0 for hyperbolic trajectories

Specific angular momentum,  is

• It is constant for an orbit

• Because  is constant, orbital p

h

h

h

han gravity, two quantities remain constant for an orbit

efined as ε ≡ E/m

rbits

 defined as 

lanes are fixed in space (neglecting orbital perturbations)

h H m⁄≡
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